Плотностной гамма-гамма каротаж и его применение

  • Вид работы:
    Курсовая работа (т)
  • Предмет:
    Физика
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    528,79 Кб
  • Опубликовано:
    2015-06-01
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Плотностной гамма-гамма каротаж и его применение

Введение


При прохождении гамма - квантов сквозь среду, кванты испытывают различного рода взаимодействия с ней. Эти процессы обусловлены энергией квантов, плотности вещества, элементных номеров атомов среды. Результатом взаимодействия является изменение характеристик потока гамма-квантов.

Целью данного курсового проекта является рассмотрение физических основ метода ГГКп, применения этого метода при решении геологических и геофизических задач. В работе пойдет речь о способах возбуждения полей гамма - квантов, их регистрации и интерпретации, с получением конкретных свойств среды.

1. Физические основы метода


Методы рассеянного гамма-излучения основаны на измерении интенсивности искусственного гамма-излучения, рассеянного породообразующими элементами в процессе их облучения потоком гамма-квантов. Интенсивность этого излучения зависит от плотности и вещественного состава горных пород (рис. 1).

Рисунок 1. Общий вид зависимости интенсивности рассеянного гамма-излучения от плотности ГП

Как известно, основными процессами взаимодействия гамма-квантов с породой являются фотоэлектрическое поглощение, комптоновское рассеяние и образование электронно-позитронных пар. В методах рассеянного гамма-излучения в основном имеют место фотоэлектрическое поглощение и комптоновское рассеяние гамма-квантов породой. В зависимости от энергии гамма-квантов и вещественного состава горной породы преобладает тот или иной процесс их взаимодействия.

При взаимодействии с горной породой жестких гамма-квантов (Еу>0,5 МэВ) в начальный момент основную роль играет комптоновское рассеяние, в результате которого жесткое гамма-излучение, потеряв значительную часть своей энергии, переходит в мягкое гамма-излучение. Следовательно, в дальнейшем основную роль играет фотоэлектрическое поглощение гамма-квантов. Как указывалось выше, вероятность комптоновского рассеяния в конечном счете находится в прямо пропорциональной зависимости от плотности горной породы, а вероятность фотоэлектрического поглощения - от ее вещественного состава и особенно от содержания тяжелых элементов. Благодаря этому, регистрируя рассеянные гамма-кванты высокой энергии, получают плотностную характеристику горной породы. Суммарная интенсивность рассеянных гамма квантов зависит как от плотности, так и от вещественного состава породы. На этом и основывается ГГКп.

Вероятность взаимодействия жестких гамма-квантов с горной породой определяется числом электронов в единице ее объема, которое пропорционально плотности породы. Таким об разом, если горную породу облyчить гамма-квантами энергии не ниже 0,5 МэВ и подобрать энергетический порог дискриминации регистрируемых гамма-квантов, то по результатам измерений ГГКп можно установить плотность этих пород.

В качестве источника гамма-излучения обычно используется Cs137 с энергией 0,66 МэВ, а мягкая компонента излучения поглощается экранами из свинца и кадмия. При проведении измерений детектор гамма-излучения располагается на определенном расстоянии от источника. Расстояние от источника до детектора выбирается таким, что при увеличении плотности горных пород, зарегистрированная интенсивность гамма-квантов уменьшается, т.е. зонд является заинверсионным. С целью уменьшения влияния скважинных условий на результаты ГГКп (диаметра скважины и слоя бурового раствора) применяют устройства, прижимающие зонд к стенке скважины стороной, на которой смонированы коллимационные окна для источника и детекторов. Наличие двух зондов ГГКп разной длины позволяет максимально снизить влияние глинистой корки на регистрируемую плотность горных пород.

Энергетический порог дискриминации подбирается экспериментально в зависимости от используемой измерительной установки и исследуемого разреза скважины и принимается большим 0,2 МэВ.

Как указывалось выше, при жестком гамма-облучении суммарная интенсивность рассеянных гамма-квантов или выделенная из нее мягкая составляющая гамма-излучений зависит от плотности и вещественного состава горных порол, т. е. от литологических особенностей разреза. В этом случае плотность горных пород определяет начальное пространственное распределение гамма-квантов малых энергий, образовавшихся в результате комптоновского рассеяния из облучаемого жесткого гамма-излучения. Вещественный состав горных пород через фотоэлектрическое поглощение оказывает влияние на дальнейшее распределение мягких гамма-квантов в исследуемой среде и в конечном счете - на интенсивность регистрируемой мягкой компоненты рассеянных гамма-квантов.

Определенную погрешность в измерения ГГКп вносит естественная радиоактивность горных пород, поэтому при расчете плотности необходимо вносить поправку, основываясь на данных гамма-каротажа.

По данным плотностного каротажа можно рассчитать коэффициент пористости породы Кп (%), который связан с плотностью соотношением:


где σ - объемная плотность породы, кг/куб.м;

σм- плотность минерального скелета, кг/куб.м;

σж- плотность жидкости, заполняющей поровое пространство, кг/куб.м.

гамма излучение каротаж квант

2. Плотностной гамма-гамма метод


Интенсивность рассеянного гамма-излучения, регистрируемая индикатором, зависит от плотности породы, длины зонда, активности и природы источника первичного гамма-излучении. По мере увеличения плотности рассеивающей среды интенсивность гамма-излучения сначала возрастает, достигая максимума, а затем падает (рис. 1). Повышение интенсивности регистрируемого излучения в области малых плотностей обусловлено увеличением количества рассеянных гамма-квантов в связи с ростом числа электронов в единице объема породы и, следовательно, с увеличением ее плотности. Последующее уменьшение интенсивности гамма-излучения связано с поглощением веществом части рассеянных гамма-квантов вследствие фотоэффекта.

Положение максимума на кривой рис. 1 зависит от длины зонда и начальной энергии гамма-квантов. С повышением энергии первичного излучения и уменьшением длины зонда максимум смешается вправо.

Глубинность исследования плотностного метода рассеянного гамма-излучения мала (10-15 см) и зависит от длины зонда, мощности источника, энергии первичных гамма-квантов, плотности горных пород.

С увеличением длины зонда глубинность этого метода возрастает. Однако при этом растет статистическая погрешность регистрации рассеянных гамма-квантов, что вызывает необходимость использования более мощных источников. Опытными работами установлено, что для исследования железных руд оптимальными являются зонды длиной 30-50 см, руд тяжелых элементов - зонды длиной 20-40 см, для определения пористости осадочных горных пород - зонды длиной 40 см.

Мощность источника выбирается такой, чтобы рассеянное гамма-излучение превышало естественное гамма-излучение пород в несколько рази тем самым обеспечивало малую статистическую погрешность регистрации, но не превышало допустимой дозы гамма-облучения обслуживающего персонала. Обычно применяются источники гамма-излучения активностью от 0,37×104 до 1,85×104 расп./с.

Увеличение начальной энергии гамма-квантов вызывает повышение их проникающей способности и, следовательно, глубинность метода. С этой точки зрения предпочтительнее источник 60Со.

Между радиусом исследования ГГКп и числом электронов в единице объема горной породы, а значит и ее плотностью существует обратно пропорциональная зависимость. Вследствие малой глубинностн ГГКп на его показания большое искажающее влияние оказывает изменение диаметра скважины, физических свойств заполняющей скважину жидкости и толщины глинистой корки, наличие или отсутствие обсадных колонн и т. д. Так, при наличии глинистой корки плотность исследуемой среды снижается, а показания ГГКп, следовательно, повышаются.

С увеличением пористости уменьшается плотность горных пород в однотипном разрезе, поэтому пласты-коллекторы на диаграммах ГГКп отмечаются высокими показаниями. Однако в неглинистом карбонатном разрезе увеличение показаний ГГКп обусловлено не только пористостью пород, но и наличием глинистой корки (рис. 2).

Рисунок 2. Выделение пластов коллекторов в неглинистом карбонатном разрезе по данным комплекса ГИС

Описываемым методом можно определить глубину залегания, мощность и строение угольных пластов [dпл, =(1,2-1,8)×103 кг/м3)], а в благоприятных условиях - их зольность. Плотностной гамма-гамма метод применяют также для выделения хромитовых руд [dпл = (3,7-4,5)×10 кг/м3] среди змеевиков и серпентинитов [dпл = (2,5-2,6)×103 кг/м3], колчеданных руд [dпл = (3,5-4,5)×103 кг/м3] среди вмещающих порол [dпл = (2,64-2,8)×103 кг/м3] марганцевых (dпл=4,5×103 кг/м3) и железных руд (dпл=3,4×103 кг/м3), бокситов (dпл=3×103 кг/м3), флюоритов (dпл=3×103 кг/м3), полиметаллических руд и калийных солей.

В нефтяных и газовых скважинах ГГКп наиболее эффективен при оценке пористости горных пород, которая основана на связи плотности dпл, с коэффициентом пористости kп:

Рисунок 3

dпл = (1 - kп)×dск+dж×kп,

где dск - минеральная плотность горной породы (скелета); dж - плотность флюида (газ, вода, нефть), заполняющего поровое пространство.

Плотностной гамма-гамма метод является одним из немногих методов промысловой геофизики, одинаково чувствительных к изменению пористости в областях ее малых и больших значений (рис. 3). В этом его основное преимущество при определении коэффициентов пористости.

3. Аппаратура ГГК-П


При ГГК-П используется аппаратура СГП2, которая предназначена для измерения объемной плотности горных пород в скважинах диаметром от 160 до 320 мм.

Аппаратура эксплуатируется в комплекте со следующими изделиями:

трехжильным кабелем типа КГ3-67-180 длиной до 7500 м;

источником гамма-излучения Cs137 активностью (1.28±0.33)x1010 Бк, создающим на расстоянии 1 м мощность экспозиционной дозы (5.95 ±1.55)x10-9 А/кг.

Диапазон измерения объемной плотности горных пород от 1.7x103 до 3.0x103 кг/м3

Диапазон рабочих температур скважинного прибора от - 10 до 200 оС, рабочее гидростатическое давление - до 120 МПа.

В качестве детекторов используются кристаллы NaI(Tl) размерами 25×30 мм в канале малого и 25×40 мм в канале большого зондов ГГКп в комплекте с ФЭУ-74А. Коллимационные окна заполнены капролоном. Для регулировки спектральной чувствительности измерительной установки в коллиматоре большого зонда установлен экран из свинца.

Рисунок 4. Схема прибора для ГГК-П

Плотность рассчитывается по формуле:


где Iмз.эт, Iбз.эт. - значения средних частот следования импульсов по каналам малого и большого зондов, зарегистрированные на образце плотности с ρ = 2,59 г/см3;мз, Iбз- текущие значения средних частот следования импульсов по каналам малого и большого зондов, соответственно.

Сопротивление между 1 жилой и корпусом должно быть равно 3,3 кОм плюс сопротивление кабеля и при смене подключения щупов омметра - 4,3 кОм плюс сопротивление кабеля. Сопротивление между 2 жилой и корпусом и между 3 жилой и корпусом должно равняться сопротивлению кабеля плюс 60 Ом.

Ток питания электронного блока скважинного прибора постоянный, 140±10 мА, при напряжении на входе скважинного прибора не более 20 В.

Ток, потребляемый электродвигателем прижимного устройства, должен быть 0.6±0.05 А.

Импульсы на выходе скважинного прибора имеют амплитуду не менее 3В и длительность 45±5 мкс, причем импульсы ГГКп имеют положительную полярность, а ГГКп бз - отрицательную.

Рисунок 5

От длины зонда зависит относительная интенсивность регистрируемых гамма - квантов (рис. 5). Из этих графиков видно, что по мере роста длинны зонда при одинаковых значениях плотности, различия в скорости счета то же увеличивается. Т. о. разрешающая способность растёт по мере увеличения длины зонда.

Для экранированного от скважины прибора относительная дифференциация, за которую принято отношение показаний I против пласта с плотностью 2 или 2,325 г/см3 к значению J0 в пласте с плотностью 2,65 г/см3, растет с увеличением длины зонда z. Из сопоставления I/I0 и I2/I0 следует, что зависимость Ln(I/I0) = f(ρ) близка к линейной при z > 20 см.

Наиболее важный вывод - уменьшение влияния глинистой корки с увеличением длины зонда z. При увеличении z от 35 до 100 см влияние промежуточной среды уменьшается примерно в 2 раза, но еще остается достаточно большим (0,04-0,06 г/см3 на 1 см глинистой корки), что не позволяет отказаться от учета этого фактора и соответствующей корректировки результатов ГГКп.

Геометрическая глубинность R, увеличивается с уменьшением плотности ρ, и ростом длины зонда z, в среднем составляет около 7-12 см.

Таким образом, информация при ГГКп усредняется по достаточно большому объему горных пород. Однако по сравнению с данными, полученными из керна, наши данные более представительны и кондиционны, т.к. получены при глубинных условиях.

 

4. Применение плотностного гамма-гамма каротажа на практике


Метод ГГКп относится к основным исследованиям, проводится во всех поисковых и разведочных скважинах, в открытом стволе, в интервалах детальных исследований, совместно с комплексом БКЗ. ГГКп решает следующие геофизические задачи:

-       обеспечивается высокое вертикальное расчленение разреза (выделяются контрастные по объемной плотности прослои, начиная с мощности 0,4-0,6 м и больше);

-       обеспечивается определение объемной плотности слоя породы толщиной 7-15 см вглубь пласта (с увеличением плотности среды глубинность ГГКп уменьшается, и наоборот).

ГГКп необходим для решения следующих геологических задач:

-       литостратиграфическое расчленение разреза (в сочетании с комплексом ГИС);

-       в неглинистых терригенных и карбонатных коллекторах определяется пористость (отдельно по ГГКп, или в сочетании с АК, НКТ) при промывочной жидкости любого состава;

-       в глинистых терригенных и карбонатных коллекторах определяется пористость только по комплексу методов ГГКп, АК, НКТ, ГК, также при промывочной жидкости любого состава (пресная, минерализованная);

-       оценка общей пористости в коллекторах со сложной структурой порового пространства с привлечением АК, НКТ, ГК;

-       выделение газонасыщенных интервалов (в комплексе методов ГИС) в пластах без проникновения и с высокими фильтрационно-емкостными свойствами;

-       выделение зон разуплотнений, других деформаций различного генезиса, интервалов с изменением эффективного давления (как разность горного и пластового давления), приводящего к разуплотнению пород, в том числе участков с аномально высокими пластовыми и внутрипоровыми давлениями;

-       выделение углей, зон интенсивной углефикации, карбонатных пород, пластов-реперов, опорных пластов.

В практике геологоразведочных робот ГГК-П нашел применение при поисках и разведке нефтяных, угольных и рудных месторождений.

В нефтяной геофизик метод ГГК-П используется для уточнения литологического разреза по скважинам (через плотность) и для оценки коэффициента пористости. Большое значение имеет принципиальная возможность выявления с помощью ГГК-П в карбонатной толще доломитовых разностей из-за различия их по плотностям. Однако наибольшую ценность метода связывают с возможностью оценки пористости пород, основанной на связи плотности пород с коэффициентом пористости Кп:

r= Кп×rж+(1-Кп)×rск,

где ×rск - минеральная плотность горной породы;

rж - плотность флюида (газа, воды, нефти), заполняющего поровое пространство.

Определив с помощью эталонной зависимости Iyy = f(r) плотность породы, можно затем рассчитать и искомое значение пористости:

Кп =

Величина rск для литологически однородных пород в пределах одного геологического разреза достаточно устойчива. Плотность флюида, насыщающего поровое пространство в ближней к скважине зоне, мало отличается от единицы, поскольку он связан с фильтратом бурового раствора.

В 1955 году геофизиками ГГИ УФАН был впервые опробован ГГКп при разведке угольных месторождений на Урале. Быстрое в дальнейшем распространение метода на угольных месторождениях объясняется сочетанием благоприятных физических предпосылок с ясно выраженной производственной потребностью.

 


Вывод


Плотностная модификация ГГК достаточно широко применяется при проведении геофизических и геологических работ. Метод входит в стандартные комплексы исследований нефтегазовых и угольных месторождений. Как один из основных решает задачи литологического расчленения разрезов скважин, данные используются при построении сейсмоакустических моделей. Реализуется на рудных месторождениях.

. Возжеников Г.С., Белышев Ю.В. Радиометрия и ядерная геофизика - учебник для вузов. Издательство УГГГА, 2000-406с.

. ЗАО ПГО ²Тюменьпромгеофизика². Практикум по освоению технологий ГИС (часть 3).

Похожие работы на - Плотностной гамма-гамма каротаж и его применение

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!