Изучение зависимости сопротивления полупроводника от температуры

  • Вид работы:
    Практическое задание
  • Предмет:
    Физика
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    6,41 Кб
  • Опубликовано:
    2016-05-10
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Изучение зависимости сопротивления полупроводника от температуры

План

1. Вводная часть

. Технические сведения

.1 Собственная проводимость полупроводников

.2 Примесная проводимость полупроводников

.3 Деление твердых тел на диэлектрики, проводники и полупроводники

. Результаты

1. Вводная часть

Цель работы:

1.Снять зависимость сопротивления полупроводника от температуры

2.Определить энергию его активации

Приборы и принадлежности:

1.Термостат (колба с водой)

2.Полупроводниковое сопротивление

.Цифровой амперметр B7-35

.Электрическая плитка

Рис. 1 Блох схема установки: 1 - цифровой вольтметр; 2 - полупроводниковое термосопротивление; 3 - колба с водой; 4 - электроплитка; 5 - термометр

Рабочая формула:


k - 1,38 ∙10-23 ДжК - постоянная Больцмана;

∆Wn - энергия активного полупроводника;

2. Технические сведения

.1 Собственная проводимость полупроводников

Рис. 2 - Зонная диаграмма полупроводников

При изучении электронопроводности полупроводников в качестве примеров возьмем кремний (Si) или германий (Ge), но излагаемая теория может быть применима к любому полупроводнику.

Проводимость химически чистых полупроводников называется собственной, а сами полупроводники собственными. Примерами таких полупроводников являются не только Si и Ge, но и селен (Se), мышьяк (As), теллур (Те), углерод в форме алмаза, многие химические соединения: PbS, InSb, GaAs, CdS и другие. При 0 К (см рис. 2, а) в зоне проводимости электроны отсутствуют, полупроводник ведет себя как диэлектрик. С ростом температуры повышается вероятность того, что электрон приобретет энергию, достаточную для преодоления запрещенной зоны ∆Wg и перехода в зону проводимости.

На рис. 2, б представлена зонная диаграмма собственного полупроводника при Т > 0, где - электроны в валентной зоне, ● - электроны в зоне проводимости, ○ - дырки, ∆Wg - ширина запрещенной зоны.

Кремний и германий, являясь элементами IV группы таблицы Менделеева, образуют решетку типа алмаза, в которой каждый атом связан ковалентными (парно - электронными) связями с четырьмя равноотстоящими от него соседними атомами. Условно такое взаимное расположение атомов можно представить в виде плоской структуры, изображенной на рис. 3.

Рис. 3 - Упрощенная плоска схема расположения атомов в кристалле германия: - валентные электроны; ○ - дырка; двойные линии - ковалентные связи

При достаточно высокой температуре тепловое движение может разорвать отдельные пары, освободив один электрон. Покинутое электроном место перестает быть электрически нейтральным, а в его окрестности возникает избыточный положительный заряд +е, т.е. образуется дырка. На это место может перескочить электрон одной из соседних пар. В результате дырка начинает также странствовать по кристаллу, как и освободившийся электрон. При встрече свободного электрона с дыркой они рекомбинируют (соединяются). Таким образом, проводимость полупроводников активационная: за счет термической активации растет число носителей тока: в зоне проводимости - электронов, в валентной зоне - дырок.

2.2 Примесная проводимость полупроводников

полупроводник германий кремний сопротивление

Электропроводность полупроводников весьма чувствительна даже к ничтожным количествам примесей, содержащихся в них. Так, введение в кремний всего лишь 0.001 % бора (В) увеличивает его проводимость при комнатной температуре примерно в 1000 раз. Проводимость полупроводников, обусловленная примесями, называется примесной проводимостью, а сами полупроводники - примесными полупроводниками.

Рассмотрим проводимость, возникающую при введении в германий (Ge - элемент IV группы таблицы Менделеева) элементов V группы, например мышьяка (As). На установлении валентных связей с четырьмя ближайшими соседями As тратит четыре валентных электрона. Пятый электрон оказывается очень слабо связанным со своим атомом, т.к. в среде с диэлектрической проницаемостью е электростатические силы уменьшаются в е раз, а энергия взаимодействия зарядов - в е2 раз.

Например, для Ge е = 16, энергия связи уменьшается в 256 раз, становясь равной 0.015 эВ. При такой маленькой энергии связи пятый электрон легко отрывается от атома, становясь свободным, и диффундирует по кристаллу (рис. 4, а).

При включении электрического поля эти электроны начинают переносить ток, обеспечивая примесную проводимость. На языке зонной теории данный процесс описывается так. Электронам мышьяка, не участвующим в образовании валентных связей, соответствуют энергетические уровни ∆Wd, расположенные в запрещенной зоне вблизи дна зоны проводимости, на 0.015 эВ ниже дна зоны проводимости (рис. 4, б).

Эти уровни называются донорными D. При нагревании полупроводника в зону проводимости в основном переходят электроны с таких уровней, обеспечивая его электронную проводимость, т.к. энергия активации ∆Wd этих примесей очень мала (0.015 эВ).

Рис. 4 Упрощенная решетка германия с примесью пятивалентных атомов мышьяка (а); зонная диаграмма донорного полупроводника (б): - электроны в валентной зоне и на примесных уровнях D; ● - электроны в зоне проводимости; ○ - дырки в валентной зоне; + - ионизированные атомы доноров; ∆Wd - энергия активации донорных примесей

Собственная электронно-дырочная проводимость выражена слабо, т.к. для ее возбуждения требуется намного больше энергии (∆Wg 0.4 эВ). Поэтому имеющиеся в полупроводнике дырки также являются носителями тока, но это не основные носители тока, поскольку концентрация их очень мала по сравнению с концентрацией электронов.

Проводимость в таких полупроводниках электронная (ее часто называют донорной, а примеси - донорами, примесные полупроводники такого типа - донорными). Следует запомнить, что ионизованные атомы примеси, имеющие положительный ряд, в проводимости не участвуют, т.к. ионы примесей жестко закреплены в узлах кристаллической решетки.

2.3 Деление твердых тел на диэлектрики, проводники и полупроводники



Рис. 5 Зонная диаграмма для диэлектриков

Зонная структура полупроводников очень похожа на зонную структуру диэлектриков. Но ширина запрещенной зоны полупроводников намного меньше, чем у диэлектриков, и составляет всего ∆W 0.01…3.0 эВ. Поэтому вероятность перехода электронов из валентной зоны в зону проводимости намного порядков выше, чем у диэлектриков. Но при 0 К полупроводники ведут себя как хорошие диэлектрики: несмотря на узкую запрещенную зону, электроны не могут ее одолеть, т.к. тепловая энергия кТ близка к 0 (рис. 2, а). При повышении температуры все большее число электронов забрасывается в зону проводимости и полупроводник становится способным проводить электрический ток. Кроме того, остающиеся в валентной зоне нарушенные из за ухода электронов валентные связи ведут себя в электрическом поле как своеобразные заряды и тоже способны переносить ток (рис. 2, б). При обычных температурах удельное сопротивление полупроводников лежит в пределах 10-6 Ом ⋅ м≤ p≤108 Ом ⋅ м.

3. Результаты

Таблица результатов

№t, єCR, ОмT, K1/Т, K-1ln R∆WnДжэВ12519102983,367,550.6323015303033,307,3333512603083,247,1444010403133,196,945458403183,146,736507003233,096,557555803283,046,368604703333,06,159653903382,965,9610703203432,915,7611752703482,875,5912802303532,835,43



График зависимости логарифма сопротивления от температуры

График зависимости п/п от t

Вывод: в данном опыте я наблюдала зависимость сопротивления полупроводника от его температуры и определила энергию активации полупроводника.

Похожие работы на - Изучение зависимости сопротивления полупроводника от температуры

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!