Фундаментальные законы о свойствах вещества

  • Вид работы:
    Другое
  • Предмет:
    Другое
  • Язык:
    Русский
    ,
    Формат файла:
    MS Word
    44,15 kb
  • Опубликовано:
    2012-03-30
Вы можете узнать стоимость помощи в написании студенческой работы.
Помощь в написании работы, которую точно примут!

Фундаментальные законы о свойствах вещества

Фундаментальные законы о составе, структуре и свойствах вещества

Оглавление.

Введение.............................................................................................................. 3

1.  Концептуальные уровни познания веществ.................................................. 5

2. Структура вещества и химические системы.................................................. 7

3. Корпускулярно-волновой дуализм и постулаты общей теории относительности.     10

4. Законы сохранения материи. Периодический закон Д.И. Менделеева...... 19

Заключение........................................................................................................ 23

Список использованной литературы:.............................................................. 24


Введение.



 «Фундаментальные законы о составе, структуре и свойствах вещества» - одна из важных и актуальных тем на сегодняшний день.

Тема моей контрольной работы актуальна потому, что химию в рамках естествознания обычно рассматривали как науку о составе и качественном превращении различных веществ. В первое время именно составом реагирующих веществ пытались объяснить свойства полученных новых веществ. Уже на этом этапе ученые встретились с огромными трудностями. Ведь для того, чтобы понять, какие именно первоначальные элементы определяют свойства простых и сложных веществ, надо, во-первых, уметь различать простые и сложные вещества, а во-вторых, определить те элементы, от которых зависят их свойства, состав и структура. Между тем, долгое время ученые считали, например, металлы сложными веществами, а об элементах существовали самые противоречивые представления.

Поэтому, несмотря на обилие эмпирического материала о свойствах различных веществ и их соединений, особенностях протекания разнообразных реакций, в химии, по сути дела, до открытия в 1869 г. периодической системы химических элементов Дмитрием Ивановичем Менделеевым (1834—1907) не существовало той объединяющей концепции, с помощью которой можно было бы объяснить весь накопленный фактический материал, а, следовательно, представить все наличное знание как законы о составе, структуре и свойствах вещества.

Актуальность моего исследования определила цель и задачи работы:

Цель работы – рассмотреть фундаментальные законы о составе, структуре и свойствах вещества.

Для достижения цели необходимо решить следующие задачи:

1. Исследовать состав, структуру  вещества и химические системы.

2. На основании теоретического анализа изучения проблемы фундаментальных законов о составе, структуре и свойствах вещества систематизировать знания о различных мнениях на эту тему.

3. Рассмотреть сущность и специфику понятий «химическое вещество», «свойства вещества».

4. Систематизировать и обобщить существующие в специальной литературе научные подходы к данной проблеме.

5. Сделать выводы.

Для раскрытия поставленной темы определена следующая структура: работа состоит из введения, четырех разделов и заключения. Название разделов отображает их содержание.

        

1.  Концептуальные уровни познания веществ.

 

Было бы неправильно не учитывать той громадной исследовательской работы, которая привела к утверждению системного взгляда на химические знания. Уже с первых шагов химики на интуитивном и эмпирическом уровне поняли, что свойства простых веществ и химических соединений зависят от тех неизменных начал или носителей, которые впоследствии стали называть элементами. Выявление и анализ этих элементов, раскрытие связи между ними и свойствами веществ охватывают значительный период в истории химии, начиная от гипотезы Роберта Бойля (1627—1691) и кончая современными представлениями о химических элементах как разновидностях изотопов, т.е. атомов, обладающих одинаковым зарядом ядра и отличающихся по массе. Этот первый концептуальный уровень можно назвать исследованием различных свойств веществ в зависимости от их химического состава, определяемого их элементами.

Второй концептуальный уровень познания свойств связан с исследованием структуры, т.е. способа взаимодействия элементов веществ.  Эксперимент и производственная практика убедительно доказывали, что свойства полученных в результате химических реакций веществ зависят не только от элементов, но и от взаимосвязи и взаимодействия элементов в процессе реакции. Именно поэтому в процессе познания и использования химических явлений необходимо было учитывать их структуру, т.е. характер взаимодействия составных элементов вещества.[1]

Третий концептуальный уровень познания представляет собой исследование внутренних механизмов и условий протекания химических процессов, таких, как температура, давление, скорость протекания реакций и некоторые другие. Все эти факторы оказывают громадное влияние на характер процессов и объем получаемых веществ, что имеет первостепенное значение для массового производства.

Наконец, четвертый концептуальный уровень является дальнейшим развитием предыдущего уровня, связанным с более глубоким изучением природы реагентов, участвующих в химических реакциях, а также с применением катализаторов, значительно ускоряющих скорость их протекания. На этом уровне мы встречаемся уже с простейшими явлениями самоорганизации, изучаемыми синергетикой.[2]

2. Структура вещества и химические системы


Характер любой системы, как известно, зависит не только от состава и строения её элементов, но и от их взаимодействия. Именно такое взаимодействие определяет специфические, целостные свойства самой системы. Поэтому при исследовании разнообразных веществ и их реакционной способности ученым приходилось заниматься и изучением их структур. Соответственно уровню достигнутых знаний менялись и представления о химической структуре веществ. Хотя разные ученые по-разному истолковывали характер взаимодействия между элементами химических систем, тем не менее все они подчеркивали, что целостные свойства этих систем определяются именно специфическими особенностями взаимодействия между их элементами.

В качестве первичной химической системы рассматривалась при этом молекула, и поэтому, когда речь заходила о структуре веществ, то имелась в виду именно структура молекулы как наименьшей единицы вещества. Сами представления о структуре молекулы постепенно совершенствовались, уточнялись и конкретизировались, начиная от весьма общих предположений отвлеченного характера и заканчивая гипотезами, обоснованными с помощью систематических химических экспериментов. Если, например, по мнению известного шведского химика Йенса Берцелиуса (1779—1848), структура молекулы возникает благодаря взаимодействию разноименно заряженных атомов или атомных групп, то французский химик Шарль Жерар (1816—1856) справедливо указывал на весьма ограниченный характер такого представления. В противовес этому он подчеркивал, что при образовании структур различные атомы не просто взаимодействуют, но известным образом преобразуют друг друга, так что в результате возникает определенная целостность, или, как мы сказали бы теперь, система. Однако эти общие и в целом правильные представления не содержали практических указаний, как применить их для синтеза новых химических соединений и получения веществ с заранее заданными свойствами.[3]

Такую попытку раскрытия структуры молекул и синтезирования новых веществ предпринял известный немецкий химик Фридрих Кекуле (1829—1896). Он стал связывать структуру с понятием валентности элемента, или числа единиц его сродства. На этой основе и возникли те структурные формулы, которыми с определенными модификациями пользуются при изучении органической химии в школе. В этих формулах элементы связывались друг с другом по числу единиц их валентности. Комбинируя атомы различных химических элементов по их валентности, можно прогнозировать получение различных химических соединений в зависимости от исходных реагентов. Таким путем можно было управлять процессом синтеза различных веществ с заданными свойствами, а именно это составляет важнейшую задачу химической науки.

Дальнейший шаг в эволюции понятия химической структуры связан с теорией химического строения Александра Михайловича Бутлерова (1828—1886), который хотя и признавал, что образование новых молекул из атомов происходит за счет их химического сродства, но обращал особое внимание на степень напряжения или энергии, с которой они связываются друг с другом. Именно поэтому новые идеи А.М. Бутлерова нашли не только широкое применение в практике химического синтеза, но и получили свое обоснование в квантовой механике.

Этот краткий экскурс в историю химии показывает, что эволюция понятия химической структуры осуществлялась в направлении, с одной стороны, анализа ее составных частей или элементов, а с другой — установления характера физико-химического взаимодействия между ними. Последнее особенно важно для ясного понимания структуры с точки зрения системного подхода, где под структурой подразумевают упорядоченную связь и взаимодействие между элементами системы, благодаря которой и возникают новые целостные ее свойства. В такой химической системе, как молекула, именно специфический характер взаимодействия составляющих ее атомов определяет свойства молекулы.

Важной компонентой, характеризующей химические процессы, является их энергетика, представляющая собой потенциал взаимодействия элементов системы.

Рассматривая же экономические процессы как аналогию химическим, можно отметить, что «энергетика»  экономических  процессов  реализуется  через задействованные в них экономические ресурсы, которые с этих позиций можно рассматривать как характеристики потенциальных качеств и свойств взаимосвязи элементов экономической системы.[4]

3. Корпускулярно-волновой дуализм и постулаты общей теории относительности.


Корпускулярно-волновой дуализм означает, что частица одновременно обладает свойствами непрерывных электромагнитных волн и свойствами дискретных фотонов. Этот фундаментальный вывод был сделан физиками в XX века и вытекал из предшествующих представлений о свете.

 Ньютон считал, что свет - поток корпускул, т. е. поток прямолинейно летящих частиц вещества. Такая теория хорошо объясняла прямолинейное распространение света. Но возникали затруднения при объяснении законов отражения и преломления, а явления дифракции и интерференции совершенно не могли быть объяснены корпускулярной теорией. Поэтому возникла волновая теория света. Эта теория объясняла дифракцию и интерференцию, но возникали трудности с объяснением прямолинейного света.

 Только в XIX веке Ж. Френель, используя открытия других физиков, сумел объединить уже выведенные принципы в одну теорию, согласно которой свет - поперечная механическая волна. В дальнейшем Максвелл открыл, что свет - один из видов электромагнитного излучения. Но в начале XX века, благодаря открытиям Эйнштейна представления о свете опять изменились. Свет стал пониматься как поток фотонов. Но определенные свойства света прекрасно объяснялись и волновой теорией.

 Свет обладает как корпускулярными, так и волновыми свойствами. При этом существуют следующие закономерности: чем короче длина волны, тем ярче проявляются корпускулярные свойства, чем больше длина волны, тем ярче проявляются волновые свойства. Позднее французский физик Л. де Бройль высказал идею, что корпускулярно-волновой дуализм имеет универсальную природу, т.е. присущ всем частицам вещества. Позже эта гипотеза подтвердилась экспериментально.

 Корпускулярно-волновым дуализмом обладает и электрон. Многие концепции современной физики, такие как теория электромагнетизма, электродинамика, квантовая механика и др., основываются на представлении об электроне как носителе отрицательного электрического заряда. Однако представления о природе этого явления фактически отсутствуют.

Высказывалась гипотеза о том, что каждому протону в атоме соответствует свой собственный электрон и что природа отрицательного и положительного зарядов различается, в первую очередь, тем, что плотность распределения массы у протона возрастает от периферии к центру, а у электрона - от центра к периферии, т.е. электрон похож на мыльный пузырь, вся масса электрона может быть размазана по поверхности этого пузыря. Эта гипотеза в неявном виде присутствует в современных представлениях о сущности элементарных частиц, в соответствии с которыми элементарные частицы обладают пространственной протяженностью и своеобразной внутренней структурой.

 Образ пространственно-структурной и в то же время элементарной по своим свойствам частицы стал фактически общепринятым после экспериментального обнаружения американским физиком-экспериментатором Р.Хофштадтером пространственной «размазки» электрического заряда и магнитного момента протона.

 Считается, что свободная, невзаимодействующая микрочастица-это всего лишь математическая абстракция. Реальные физические частицы всегда взаимодействуют с вакуумными полями, испуская и поглощая виртуальные частицы[5].

 Вследствие этого вокруг каждой частицы образуется «облако» виртуальных частиц. И чем меньше масса испускаемых частиц, тем больше размеры образуемого ими облака. Продолжительность отдельных актов виртуальной диссоциации частицы (ее циклов «мигания») очень мала, но благодаря многократным их повторениям возникает постоянная, усредненная структура - «размазка» электрического заряда, магнитного момента, массы, которая становится все более плотной к центру частицы. В этом смысле говорят, что элементарная частица состоит из плотного центрального ядра - керна и рыхлой периферической оболочки.

 Такова «синтаксическая» суть современных представлений о природе элементарных частиц. И эти представления содержат в себе явный семантический смысл. В положительно заряженных частицах плотность электрического разряда, плотность массы, магнитного момента возрастает от периферии к центру. Тогда у отрицательно заряженных частиц этот вектор, в силу зеркальной симметрии, должен быть направлен в противоположную сторону, как бы характеризую противоположную волновую функцию частицы, которая по своей форме будет напоминать «мыльный пузырь», в котором процессы образования «облака» виртуальных частиц происходят вовнутрь. Таким образом, семантика этой гипотезы заключается в том, что противоположно заряженные частицы обладают и противоположными пространственно-временными формами, порождающими соответствующие противоположные заряды и магнитные моменты. Эти противоположно заряженные частицы характеризуются, в отличие от нейтральных частиц, энергетической активностью, где E - полная (собственная) энергия элементарной частицы. Следовательно, электрический заряд может характеризовать знак направления вектора энергетической активности частицы. Учитывая квантовый характер физических величин микромира, можно сказать, что энергетическая активность в элементарных частицах также должна быть квантованной и непосредственно связана с квантами электромагнитного поля.

  Периодичность энергетической активности проявляется на всех уровнях иерархии материи и находит свое отражение в Едином Периодическом законе эволюции материи, в эволюции любого двойственного отношения. Эта периодичность вскрывает волновую природу двойственных отношений, характеризуя единство «частицы» и «волны» и порождая тем самым корпускулярно-волновой дуализм Единого Периодического закона, как в физике материи, так и в физике духа.

 Естественно, что такие структуры могут и должны обладать корпускулярно-волновым дуализмом. Но, к сожалению, корпускулярно-волновой дуализм трактуется только в вероятностном смысле. Так, из противоречия между гипотезой о вращении электрона вокруг протона по стационарным орбитам и экспериментом, согласно которым можно говорить только о вероятностных орбитах электрона, вытекает вывод об электронном облаке, которое образуют вероятностные орбиты. И физики уже давно смирились с этими фактами, не пытаясь проникнуть в их физическую природу.

 Общая теория относительности (ОТО) — современная теория тяготения, связывающая его с кривизной четырехмерного пространства-времени[6].

В своем, так сказать, классическом варианте теория тяготения была создана Ньютоном еще в XVII веке и до сих нор верно служит человечеству. Она вполне достаточна для многих, если не для большинства, задач современной астрономии, астрофизики, космонавтики. Между тем ее принципиальный внутренний недостаток был ясен еще самому Ньютону. Это теория с дальнодействием: в ней гравитационное действие одного тела на другое передается мгновенно, без запаздывания. Ньютоновская гравитация так же соотносится с общей теорией относительности, как закон Кулона с максвелловской электродинамикой. Максвеллу удалось изгнать дальнодействие из электродинамики. В гравитации это сделал Эйнштейн.

Начать рассказ следует с замечательной работы Эйнштейна 1905 года, в которой была сформулирована специальная теория относительности и которая завершила в идейном отношении развитие классической электродинамики. У этой работы несомненно были предшественники, среди которых нельзя не упомянуть работы Лоренца и Пуанкаре. В их статьях уже содержались многие элементы специальной теории относительности. Однако ясное понимание, цельная картина физики больших скоростей появились лишь в упомянутой работе Эйнштейна. Не случайно, несмотря на наличие прекрасных современных учебников, ее до сих нор можно рекомендовать для первого знакомства с предметом не только студентам, но и старшеклассникам.

Что же касается ОТО, то все ее основополагающие элементы были созданы Эйнштейном.

Впрочем, предчувствие того, что физика может быть связана с кривизной пространства, можно найти в трудах замечательных ученых прошлого века Гаусса, Римана, Гельмгольца, Клиффорда. Гаусс, который пришел к идеям неевклидовой геометрии несколько ранее Лобачевского и Бойаи, но так и не опубликовал своих исследований в этой области, не только считал, что «геометрию приходится ставить в один ряд не с арифметикой, существующей чисто a priori, а скорее с механикой». Он пытался проверить экспериментально, путем точных (для того времени) измерений геометрию нашего пространства. Его идея вдохновила Римана, полагавшего, что наше пространство действительно искривлено (а на малых расстояниях даже дискретно). Жесткие ограничения на кривизну пространства были получены из астрономических данных Гельмгольцем. Клиффорд считал материю рябью на искривленном пространстве.

Однако все эти блестящие догадки и прозрения были явно преждевременны. Создание современной теории тяготения было немыслимым без специальной теории относительности, без глубокого понимания структуры классической электродинамики, без осознания единства пространства-времени. Как уже отмечалось, ОТО была создана в основном усилиями одного человека. Путь Эйнштейна к построению этой теории был долгим и мучительным. Если его работа 1905 года «К электродинамике движущихся сред» появилась как бы сразу в законченном виде, оставляя вне поля зрения читателя длительные размышления, тяжелый труд автора, то с ОТО дело обстояло совершенно иначе. Эйнштейн начал работать над ней с 1907 года. Его путь к ОТО продолжался несколько лет. Это был путь проб и ошибок, который хотя бы отчасти можно проследить по публикациям Эйнштейна в эти годы. Окончательно задача была решена им в двух работах, доложенных на заседаниях Прусской Академии наук в Берлине 18 и 25 ноября 1915 года. В них были сформулированы уравнения гравитационного поля в пустоте и при наличии источников.

В последнем этапе создания ОТО принял участие Гильберт. Вообще значение математики (и математиков) для ОТО очень велико. Ее аппарат, тензорный анализ, или абсолютное дифференциальное исчисление, был развит Риччи и Леви-Чивита. Друг Эйнштейна, математик Гроссман познакомил его с этой техникой.

И все же ОТО — это физическая теория, в основе которой лежит ясный физический принцип, твердо установленный экспериментальный факт[7].

Факт этот но существу был установлен еще Галилеем. Он хорошо известен каждому успевающему старшекласснику: все тела движутся в поле тяжести (в отсутствие сопротивления среды) с одним и тем же ускорением, траектории всех тел с заданной скоростью искривлены в гравитационном поле одинаково. Благодаря этому, в свободно падающем лифте никакой эксперимент не может обнаружить гравитационное поле. Иными словами, в системе отсчёта, свободно движущейся в гравитационном поле, в малой области пространства-времени гравитации нет. Последнее утверждение — это одна из формулировок принципа эквивалентности.

Данное свойство поля тяготения отнюдь не тривиально. Достаточно вспомнить, что в случае электромагнитного поля ситуация совершенно иная. Существуют, например, подзаряженные, нейтральные тела, которые электромагнитного поля вообще не чувствуют. Так вот, гравитационно- нейтральных тел нет, не существует ни линеек, ни часов, которые не чувствовали бы гравитационного поля. Эталоны привычного евклидова пространства меняются в поле тяготения.

Геометрия нашего пространства оказывается неевклидовой.

Некоторое представление о свойствах такого пространства можно получить на простейшем примере сферы, поверхности обычного глобуса. Рассмотрим на ней сферический треугольник — фигуру, ограниченную дугами большого радиуса. (Дуга большого радиуса, соединяющая две точки на сфере, — это кратчайшее расстояние между ними: она естественный аналог прямой на плоскости.) Выберем в качестве этих дуг участки меридианов, отличающихся на 90o долготы, и экватора (рис. 1). Сумма углов этого сферического треугольника отнюдь не равна сумме углов π,треугольника на плоскости:


Заметим, что превышение суммы углов данного треугольника над может быть выражено через его площадь S и радиус сферы R:


Можно доказать, что это соотношение справедливо для любого сферического треугольника. Заметим также, что обычный случай треугольника на плоскости тоже вытекает из этого равенства: плоскость может рассматриваться как сфера с R→∞


Перепишем формулу (2) иначе:


Отсюда видно, что радиус сферы можно определить, оставаясь на ней, не обращаясь к трехмерному пространству, в которое она погружена. Для этого достаточно измерить площадь сферического треугольника и сумму его углов. Иными словами, K (или R) является внутренней характеристикой сферы. Величину K принято называть гауссовой кривизной, она естественным образом обобщается на произвольную гладкую поверхность:

Здесь углы и площадь относятся к малому треугольнику на поверхности, ограниченному линиями кратчайших расстояний на ней, а кривизна, вообще говоря, меняется от точки к точке, является величиной локальной. И в общем случае, так же как и для сферы, K служит внутренней характеристикой поверхности, не зависящей от ее погружения в трехмерное пространство. Гауссова кривизна не меняется при изгибании поверхности без ее разрыва и растяжения. Так, например, конус или цилиндр можно разогнуть в плоскость, и поэтому для них, так же как для плоскости, K = 0.


На соотношения (3), (4) полезно взглянуть несколько иначе. Вернемся к рисунку 1. Возьмем на полюсе вектор, направленный вдоль одного из меридианов, и перенесем его вдоль этого меридиана, не меняя угла между ними (в данном случае нулевого), на экватор. Далее, перенесем его вдоль экватора, снова не меняя угла между ними (на сей раз π/2), на второй меридиан. И наконец, таким же образом вернемся вдоль второго меридиана на полюс. Легко видеть, что, в отличие от такого же переноса по замкнутому контуру на плоскости, вектор окажется в конечном счете повернутым относительно своего исходного направления на π/2, или на

Этот результат, поворот вектора при его переносе вдоль замкнутого контура на угол, пропорциональный охваченной площади, естественным образом обобщается не только на произвольную двумерную поверхность, но и на многомерные неевклидовы пространства. Однако в общем случае n-мерного пространства кривизна не сводится к одной скалярной величине K(x). Это более сложный геометрический объект, имеющий n2(n2 - 1)/12 компонентов. Его называют тензором кривизны, или тензором Римана, а сами эти пространства — римановыми. В четырехмерном римановом пространстве-времени общей теории относительности тензор кривизны имеет 20 компонентов.

Однако роль ОТО отнюдь не сводится к исследованию малых поправок к обычной ньютоновской гравитации. Существуют объекты, в которых эффекты ОТО играют ключевую роль, важны стопроцентно. Это так называемые черные дыры.


Еще в XVIII веке Митчел и Лаплас независимо заметили, что могут существовать звезды, обладающие совершенно необычным свойством: свет не может покинуть их поверхность. Рассуждение выглядело примерно так. Тело, обладающее радиальной скоростью v, может покинуть поверхность звезды радиусом R и массой M при условии, что кинетическая энергия этого тела mv2/2 превышает энергию притяжения GMm/R,т.е. при v2 > 2GM/R. Применение последнего неравенства к свету (как мы теперь понимаем, совершенно не обоснованное) приводит к выводу: если радиус звезды меньше чем

Черная дыра — вполне естественное название для такого объекта. Свойства его весьма необычны. Черная дыра возникает, когда звезда сжимается настолько сильно, что усиливающееся гравитационное поле не выпускает во внешнее пространство ничего, даже свет. Поэтому из черной дыры не выходит никакая информация. Многочисленные результаты астрономических наблюдений дают серьезные основания полагать, что черные дыры — это не просто игра ума физиков-теоретиков, а реальные объекты, существующие по крайней мере в ядрах галактик[8].

4. Законы сохранения материи. Периодический закон Д.И. Менделеева.


Материя в природе вечна, несоздаваема и неуничтожима. В каждом конкретном явлении происходит преобразование материи из одной формы в другую. Сформулирован закон ее сохранения.

Закон сохранения материи сформулирован М. В. Ломоносовым (“сколько чего у одного тела отнимется, столько присовокупится к другому”)[9].

Законы сохранения энергии, количества движения, момента количества движения и электрического заряда есть проявление общего закона сохранения материи применительно к конкретным явлениям.

Закон сохранения количества движения:

Количество движения замкнутой системы с течением времени не изменяется:

 или     

Из закона вытекает, что взаимодействие тел, составляющих замкнутую систему, приводит только к обмену количествами движения между этими телами, но не может изменить движения системы как целого: при любом взаимодействии между телами, образующими замкнутую систему, скорость движения центра инерции этой системы не изменяется.

Закон сохранения момента количества движения — если момент внешних сил относительно неподвижного центра вращения равен нулю, то момент ко­личества движения системы сохраняется неизменным:

 

Работа и механическая энергия.

Энергия — общая количественная мера движения и взаимодействия всех видов материи. Энергия в природе не возникает и не исчезает, она только может переходить из одной формы в другую.

Механической энергией W  называется энергия механического движения и взаимодействия тел. Она равна сумме кинетической Wк  и потенциальной Wn энергий:

                     

Закон сохранения механической энергии: механическая энергия любой замкнутой системы остается неизменной при любых перемещениях тел.

В 1869 г. Д. И. Менделеев на основе анализа свойств простых веществ и соединений сформулировал Периодический закон:

Свойства простых тел... и соединений элементов находятся в периодической зависимости от вели­чины атомных масс элементов[10].

На основе периодического закона была составлена периодическая система элементов. В ней элементы со сходными свойствами оказались объединены в верти­кальные столбцы — группы. В некоторых случаях при размещении элементов в Периодической системе приходилось нарушать последовательность возрастания атомных масс, чтобы соблюда­лась периодичность повторения свойств. Например, пришлось "поменять местами" теллур и йод, а также аргон и калий.

Причина состоит в том, что Менделеев предложил периодический закон в то время, когда не было ничего известно о строении атома.

После того, как в XX веке была предложена планетарная модель атома, периодический закон формулируется следующим образом:

· Свойства химических элементов и соединений на­ходятся в периодической зависимости от зарядов атомных ядер.

· Заряд ядра равен номеру элемента в периодической системе и числу электронов в электронной оболочке атома.

Эта формулировка объяснила "нарушения" Перио­дического закона.

В Периодической системе номер периода равен числу электронных уровней в атоме, номер группы для эле­ментов главных подгрупп равен числу электронов на внешнем уровне.

Причиной периодического изменения свойств химиче­ских элементов является периодическое заполнение электронных оболочек. После заполнения очередной оболочки начинается новый период. Периодическое изменение элементов ярко видно на изменении состава и свойств и свойств оксидов.

Научное значение периодического закона. Периоди­ческий закон позволил систематизировать свойства хи­мических элементов и их соединений. При составлении периодической системы Менделеев предсказал сущест­вование многих еще не открытых элементов, оставив для них свободные ячейки, и предсказал многие свойст­ва неоткрытых элементов, что облегчило их открытие.

В 1869 году Менделеев опубликовал сообщения о систематезации известных тогда элементов. В статье “Соотношения свойств с атомным весом элементов” Менделеев впервые в истории естествознания привел систему элементов, которая оказала основополагающее влияние на дальнейшее развитие химии. Менделеев разместил элементы в порядке возрастания атомных масс. Он использовал этот принцип, поскольку он проанализировал работы Дальтона по установлению связи между количественными и качественными свойствами веществ. Важнейшим из количественных свойств элементов в то время была атомная масса.

Но Менделеев не рассматривал свойства элементов лишь как функцию от атомной массы: таким критерием он считал диалектическую общность отношений важнейших качественных и количественных характерных признаков элементов. Такой материалистический диалектический анализ позволил Менделееву открыть периодический закон. Он считал, что свойства элементов и их соединений зависят от величины атомных масс элементов. Этот закон лег в основу созданной им системы элементов.

Создание периодической системы элементов, последовательное применение периодического закона при изучении различных веществ является главным отличием работ Менделеева по систематизации элементов от аналогичных работ других ученых. Доказывая генетические отношения между химическими элементами, Менделеев писал: “До периодического закона простые тела представляли собой лишь отрывочные случайные явления природы”. Установление периодического закона исключило случайность в изучении химических элементов. Менделеев не только открыл закон и построил таблицу элементов, но и способствовал устранению пробелов в таблице и улучшению ее.

Так, в 1871 г. Менделеев существенно уточнил атомные массы трети известных элементов. Никто из соавторов закона, как стали впоследствии называть, например, Шанкартуа, Ньюлендса, Л. Мейера, не мог на основании имеющихся данных получить подобные результаты. Более того, они даже ставили под сомнение закономерный характер периодического изменения свойств элементов. Но Менделеев был твердо уверен, что он открыл закон природы[11].

Уже в работе 1869 года обнаружилось стремление Менделеева прогнозировать дальнейшее направление изучения периодичности, когда он писал: “Должно ожидать открытий еще многих неизвестных тел, например сходных с Al или Si с атомной массой”. Позднее Менделеев уточнил эти предсказания и писал, например, что экасилиций не может быть получен из EsO2 или EsK2F2 при действии натрия. Водяной пар должен трудно разлагаться этим элементом, на кислоты экасилиций должен действовать слабо, но сильнее, чем на основания.

Заключение.



Подводя итог работы, можно сделать следующие выводы.

Развитие естествознания как любой науки связано с ее историей и логикой. История любой науки характеризуется определенными заметными открытиями и достижениями, которые дотированы по времени в рамках исторических эпох. Это положение очевидно и не требует доказательств. Логика любой науки неявна. В этом заключаются определенные трудности. Как правило, логику связывают с установлением определенных основанных на фактическом материале тенденций, основополагающих идей и их взаимосвязи. Иначе логика развития науки предопределяет знание закономерностей причин и сил научного прогресса. Естествознание в своем развитии носит закономерный систематический характер. Систематическим называют такое развитие науки, которое является безостановочным, непрекращающимся и имеющим характер прогрессивно развивающейся системы.

Все эти закономерности развития естествознания становятся очевидны, если прослеживать изменение представлений о фундаментальных законах о составе, структуре и свойствах вещества.

Список использованной литературы:

1.   Беляев М.И. «Единая теория эволюции материи», Москва, «Милогия», 2000 г.

2.   Ващекин Н.П. Концепции современного естествознания. – М.: МГУК, 2000 г.

3.   Гузей Л.С., Сорокин В.В., Суровцева Р.П. Химия. Учебник для 8 класса общеобразовательных учреждений. М.: Просвещение, 1995.

4.   Концепции современного естествознания, 1997.

5.   Новиков И.Д. Энергетика черных дыр. — М.: Знание, 1986.

6.   Петрянов И.В., Самое необыкновенное вещество в мире. Москва, 1975 г.

7.   Потеев М.И. Концепции современного естествознания, Санкт-Петербург, Питер, 1999 г.

8.   Прокофьев М.А., Энциклопедический словарь юного химика. Москва, 1982 г.

9.   Эйнштейн А. Собрание научных трудов. Т. I, статья 8. М.: Наука, 1965.



[1] Беляев М.И. «Единая теория эволюции материи», Москва, «Милогия», 2000 г., с. 84

[2] Петрянов И.В., Самое необыкновенное вещество в мире. Москва, 1975 г., с. 93

[3] Концепции современного естествознания, 1997, с. 226

[4] Прокофьев М.А., Энциклопедический словарь юного химика. Москва, 1982 г., с. 34

[5] Эйнштейн А. Собрание научных трудов. т.I, стр. 65, статья 8, М.: Наука, 1965

[6] Потеев М.И. Концепции современного естествознания, Санкт-Петербург, Питер, 1999 г.

[7] Потеев М.И. Концепции современного естествознания, Санкт-Петербург, Питер, 1999 г.

[8] Новиков И.Д. Энергетика черных дыр. — М.: Знание, 1986

[9] Ващекин Н.П. Концепции современного естествознания. – М.: МГУК, 2000 г.

[10] Гузей Л.С., Сорокин В.В., Суровцева Р.П. Химия. Учебник для 8 класса общеобразовательных учреждений. М.: Просвещение, 1995

[11] Гузей Л.С., Сорокин В.В., Суровцева Р.П. Химия. Учебник для 8 класса общеобразовательных учреждений. М.: Просвещение, 1995

Похожие работы на - Фундаментальные законы о свойствах вещества

 

Не нашли материал для своей работы?
Поможем написать уникальную работу
Без плагиата!